Emission enhancement in Er^{3+}/Pr^{3+} -codoped germanate glasses and their use as a 2.7-µm laser material

Xiangtan Li (李响潭)^{1,2}, Xueqiang Liu (刘雪强)^{1,2}, Liyan Zhang (张丽艳)¹, Lili Hu (胡丽丽)¹, and Junjie Zhang (张军杰)^{1*}

¹Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics,

²Graduate University of Chinese Academy of Science, Beijing 100049, China

*Corresponding author: jjzhang@mail.siom.ac.cn

Received August 29, 2013; accepted October 17, 2013; posted online November 20, 2013

Emission enhancement at 2.7 μ m is observed in Er³⁺/Pr³⁺-codoped germanate glasses when pumped by a 980-nm laser diode. Significant reductions in 1.5- μ m emission and upconversion intensity indicate efficient energy transfer between Er³⁺ and Pr³⁺; the energy transfer efficiency is as high as 77.4%. The mechanisms of energy transfer are discussed in detail. The calculated emission cross-section of Er³⁺/Pr³⁺codoped germanate glass is 8.44×10^{-21} cm², which suggests that Er³⁺/Pr³⁺-codoped germanate glass can be used to achieve efficient 2.7- μ m emission.

used to achieve efficient 2.7- μ m emission.

OCIS codes: 160.2290, 160.5690, 300.2140. doi: 10.3788/COL201311.121601.

Increasing interest has been given to 2.7- μ m fibers because of their wide range of applications in surgery, the military, fiber communications, and monitoring of atmospheric contaminants^[1]. New types of laser glass serving as mid-infrared (IR) hosts have also been developed. ZBLAN glass is a candidate material that may potentially be applied in Er³⁺-doped 2.7- μ m fiber lasers^[2-4]. Fluorophosphate, chalcogenide, and tellurite glasses also exhibit 2.7- μ m fluorescence^[5-7]. Despite this property, however, ZBLAN and chalcogenide glasses have unsatisfactory thermal and chemical stabilities, and tellurite glass is fragile.

Similar to tellurite glass, germanate glass has a low phonon energy as well as good thermal stability and chemical durability. These desirable qualities indicate that germanate glass may be applied in mid-IR lasers. Unfortunately, -OH groups in oxide glass hosts often eliminate 2.7-µm emission. Thus, fluoride is commonly added to germanate glass matrices to reduce their OH^- contents.

Corresponding to a ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ transition, Er^{3+} 2.7-µm emission, which is considered "self-terminating," cannot be obtained efficiently. Doping with rare-earth ions, such as Ho³⁺, Yb³⁺, Tm³⁺, and Nd³⁺, which have energy levels approximately equal to that of ${}^{4}I_{13/2}$, have been demonstrated to solve this problem^[5,8–10]. Thus, codoping with Pr³⁺ may be expected to enhance 2.7-µm emissions.

In this letter, Er^{3+}/Pr^{3+} (EP)-codoped germanate glasses with molar compositions of 56GeO₂-15PbO-14Na₂O-12Ga₂O₃-3PbF₂-Er₂O₃- xPr_2O_3 (x=0,0.1,0.2, 0.5, labeled EP0, EP1, EP2, and EP5, respectively) were melted. The syntheses and measurement methods of the EP glasses are identical to those described in Ref. [9].

The absorption spectra of Er^{3+} -doped and EP-codoped germanate glasses are shown in Fig. 1; in the figure, absorption bands attributed to the transitions of Er^{3+} and Pr^{3+} ions from the ground state are labeled. Er^{3+} shows similar absorption bands in the samples, and Pr^{3+} absorption peaks at approximately 600 and 1500 nm are found in the spectra of the codoped samples. The specific absorption bands are also enhanced by increases in Pr^{3+} content. Absorption bands at approximately 980 nm indicate that the glass samples may be efficiently excited by a 980-nm laser diode.

The radiative transition of the $4f^n-4f^n$ configuration of a rare-earth ion has been analyzed in accordance with Judd–Ofelt theory^[11]. The least-squares method may be generally applied to fit the measured oscillator strengths of absorption bands. The transition ground state ${}^4I_{15/2}$ to ${}^4I_{13/2}$ is excluded. The root-mean-square error is equal to 0.1×10^{-6} , which indicates that the results are reliable. The Judd–Ofelt parameters Ω_{λ} are obtained from the measured absorption spectra in this letter. The obtained parameters are $\Omega_2=6.60 \times 10^{-20} \text{cm}^2$, $\Omega_4=1.75 \times 10^{-20} \text{cm}^2$, and $\Omega_6=0.99 \times 10^{-20} \text{cm}^2$. Using Judd–Ofelt intensity parameters, the radiative transition probability (A_{rad})

Fig. 1. Absorption spectra of Er^{3+} and EP-codoped samples.

Chinese Academy of Sciences, Shanghai 201800, China

Fig. 2. IR PL spectra in the (a) 1.5- and (b) 2.7-µm region of Er^3 ⁺- and EP-doped glasses.

Fig. 3. Upconversion spectra of EP-doped glass. Inset: decay time in Er^{3+} -doped and EP-codoped glasses.

and branching ratios (β) of the Er³⁺:⁴I_{11/2} \rightarrow ⁴I_{13/2} transition for the codoped sample are calculated as 36.69 s^{-1} and 16.71%, respectively.

The IR photoluminescence (PL) spectra of Er³⁺-doped and EP-codoped glasses are shown in Fig. 2. Emission peaks centered at 1550 and 2710 nm may be observed. In the Er^{3+} -doped glass (EP0), very slight 2.7-µm emission from the excited energy level ${}^{4}I_{11/2}$ may be observed, and intense PL from ${}^{4}I_{13/2}$ is measured. This phenomenon indicates the highly efficient nonradiative relaxation of ${}^{4}I_{11/2}$ to ${}^{4}I_{13/2}$. In Fig. 2(a), a significant reduction in emission intensity of ${}^{4}I_{13/2}$ level may be observed. The intensity of 1550-nm emission decreases with increasing Pr^{3+} concentration. Figure 2(b) shows significant enhancements in 2.7-µm emission with increasing addition of Pr^{3+} . This observation suggests that Pr^{3+} ions can be used effectively to depopulate the Er^{3+} : ${}^{4}\mathrm{I}_{13/2}$ level.

The PL decay curves of the Er^{3+} :⁴I_{13/2} levels of the Er^{3+} -doped and EP-codoped glasses are measured. The $\tau({}^{4}I_{13/2})$ value significantly decreases when the glass is codoped with Pr^{3+} . The experimental values of $\tau_{Er/Pr}$ and τ_{Er} are 3.23 ms and 731 µs, respectively. When the concentration of Pr^{3+} is 0.2 mol%, the lifetime of ${}^{4}I_{13/2}$ is too low to determine. This result suggests that $\tau({}^{4}I_{13/2})$

is significantly quenched by Pr^{3+} ions. The quenched ${}^{4}I_{13/2}$ lifetime indicates energy transfer to $Pr^{3+[12]}$. Lifetime quenching of ${}^{4}I_{13/2}$ also explains the energy transfer between Er^{3+} and Pr^{3+} . The energy transfer efficiency, which is calculated as 77.4% in this letter, is defined in Ref. [13].

To investigate the energy transfer mechanism, the upconversion spectra of Er^{3+} - doped and EP-codoped glasses were obtained (Fig. 3). The green and red emission signals are evidently weaker in EP-codoped glass than in Er^{3+} -doped glass, which indicates that the ions of ${}^{4}I_{15/2}$ are excited to the ${}^{4}I_{11/2}$ state by ground-state absorption. Some ions in the ${}^{4}I_{11/2}$ and ${}^{4}I_{13/2}$ levels show an upconversion process (ETU). The energy stored in ${}^{4}F_{7/2}$ then decays nonradiatively into ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$, and ${}^{4}F_{9/2}$. As such, the green emission may be attributed to Er^{3+} : ${}^{2}\mathrm{H}_{11/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$, ${}^{4}\mathrm{S}_{3/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$, whereas the red emission is related to Er^{3+} : ${}^{4}\mathrm{F}_{9/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$. After addition of Pr^{3+} to the glass, the ETU process weakens because of the energy transfer processes Er^{3+} : ${}^{4}\mathrm{I}_{11/2} \rightarrow \mathrm{Pr}^{3+}$: ${}^{1}\mathrm{G}_{4}$ (ET1) and $Er^{3+}:{}^{4}I_{13/2} \rightarrow Pr^{3+}:{}^{3}F_{3,4}$; hence, ions in the ${}^{4}I_{11/2}$ level are largely depopulated and 1.5-µm emission decreases. This process is shown in Fig. 4.

In this letter, oxygen gas bubbling and substitution of PbO by PbF_2 were applied to reduce OH^- groups. According to Ref. [14], high contents of PbF_2 may damage

Fig. 5. Fourier-transform IR spectra of EP-codoped glass samples with and without 30-min bubbling and substitution of PbO by $3 \mod \%$ PbF₂.

Table 1. Spontaneous Transition Probability A of ${}^{4}I_{11/2}$ to ${}^{4}I_{13/2}$ and Emission Cross-sections at 2.7 μ m in Various Glasses.

Glass Compositions	$ \begin{array}{c} A \; ({}^{4}\mathrm{I}_{11/2} \rightarrow \\ {}^{4}\mathrm{I}_{13/2})(\mathrm{s}^{-1}) \end{array} $	$\sigma_{ m e}~({ m cm}^2)$	References
Fluorophosphate	22.16	$(6.57\pm0.11)\times10^{-21}$	[17]
Fluoride	28.92	9.8×10^{-21}	[18]
Fluorotellurite	21.36	6.32×10^{-21}	[19]
Germanate	36.69	8.44×10^{-21}	This
			Letter

the thermal ability of glasses; thus, only 3 mol% PbF₂ was added to the glass. The OH⁻ groups in the glass can be expressed in terms of the absorption coefficient $\alpha^{[15]}$. A description of the calculation of α can be found in Ref. [15]. The α of the bubbled sample with 3 mol% PbF₂ replacement is 0.67 cm⁻¹, which is lower than that of samples without PbF₂ (Fig. 5).

According to the emission spectra and Füchibauer–Ladenburg theory^[16], the 2.7- μ m emission cross-section is 8.44×10^{-21} cm², which is greater than that in fluorophosphate and fluorotellurite glasses. All of the results obtained in this work are listed in Table 1. The EP-codoped glass described in this letter consistently produces efficient 2.7- μ m emission.

In conclusion, enhanced 2.7-µm emission is observed in EP-codoped germanate glass. The increase in concentration of Pr^{3+} ions is beneficial to the intensity of 2.7-µm PL. Thus, addition of Pr^{3+} is a practical approach for inducing efficient 2.7-µm emission in germanate glass. The decay time of Er^{3+} :⁴I_{13/2} and the upconversion spectra of EP-codoped glass suggest energy transfer between Er^{3+} and Pr^{3+} . The energy transfer mechanisms are discussed in detail, and the energy transfer efficiency is calculated as 77.4%. Judd–Ofelt theory and Füchibauer–Ladenburg calculation results show that the spontaneous transition probability of Er^{3+} :⁴I_{11/2} \rightarrow ⁴I_{13/2} is 36.69 s⁻¹ and that the emission cross-section at 2.7 µm is 8.44×10^{-21} cm². These results suggest that EP-codoped germanate glass can be used to achieve efficient 2.7-µm emission.

This work was supported by the National Natural Sci-

ence Foundation of China (Nos. 51172252 and 61177083).

References

- M. Pollnan and S. D. Jackson, IEEE J. Selected Topics Quantum Electron. 7, 30 (2001).
- 2. X. Zhu and R. Jain, Opt. Lett. **32**, 26 (2007).
- S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 36, 2812 (2011).
- S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 34, 3062 (2009).
- L. Zhang, Z. Yang, Y. Tian, J. Zhang, and L. Hu, J. Appl. Phys. **110**, 093106 (2011).
- H. Zhan, Z. Zhou, J. He, and A. Lin, Opt. Lett. 37, 3408 (2012).
- H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, Opt. Lett. 36, 1815 (2011).
- D. J. Coleman, S. D. Jackson, P. Golding, and T. A. King, J. Opt. Soc. Am. B 19, 2927 (2002).
- Y. Guo, M. Li, L. Hu, and J. Zhang, J. Phys. Chem. A 116, 5571 (2012).
- D. F. d. Sousa, J. A. Sampaio, L. A. O. Nunes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, Phys. Rev. B 62, 3176 (2000).
- X. Feng, S. Tanabe, and T. Hanada, J. Am. Ceram. Soc. 84, 165 (2001).
- P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000).
- G. Bai, J. Ding, L. Tao, K. Li, L. Hu, and Y. H. Tsang, J. Non-Cryst. Solids 358, 3403 (2012).
- X. Jiang, J. Lousteau, S. Shen, and A. Jha, J. Non-Cryst. Solids 355, 2015 (2009).
- S. Guan, Y. Tian, Y. Guo, L. Hu, and J. Zhang, Chin. Opt. Lett. 10, 071603 (2012).
- S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, IEEE J. Quantum Electron. 28, 2619 (1992).
- Y. Tian, R. Xu, L. Zhang, L. Hu, and J. Zhang, Opt. Lett. 36, 109 (2011).
- F. Huang, Y. Guo, Y. Ma, L. Zhang, and J. Zhang, Appl. Opt. 52, 1399 (2013).
- Y. Guo, G. Gao, M. Li, L. Hu, and J. Zhang, Mat. Lett. 80, 56 (2012).